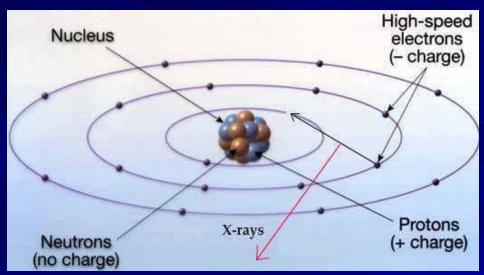

Precise Measurements of α_k for the 346.5 keV M4 Transition in ¹⁹⁷Pt^m

By James Nolan w/ J.C. Hardy and N. Nica TAMU Cyclotron REU Program 1 August, 2008

Internal Conversion

- Nuclear de-excitation energy transferred to electron.
- Electron emission from atomic orbital.
- Typically observed in inner shell electrons (K, L, and M).
- Higher-shell electron moves down to fill atomic vacancy; characteristic xray emission results.
- Competes with gammaray emission.



Internal Conversion Coefficient (ICC)

 $\alpha = \frac{\text{number of de-excitations via electron emission}}{\text{number of de-excitations via gamma-ray emission}}$

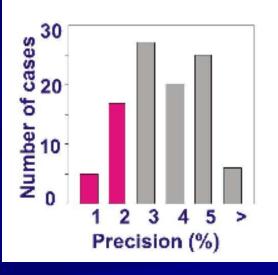
- The ICC is the ratio of the total number of decays for a particular transition that proceed by internal conversion to those that proceed by gamma emission.
- ICC measurements are important in the study of nuclear decay schemes: branching ratios, spin and parity assignments, and transition rates.
- Precise ICC measurements are useful for detector efficiency calibration.

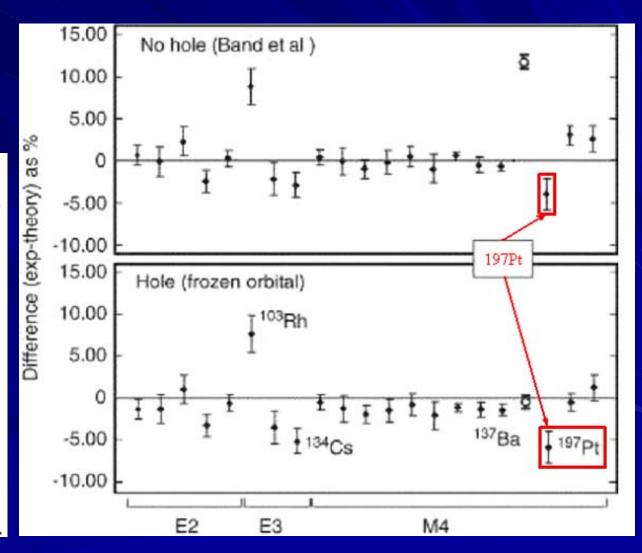
Theoretical ICC Calculations

Nucleus

High-speed electrons (- charge)

Protons (+ charge)

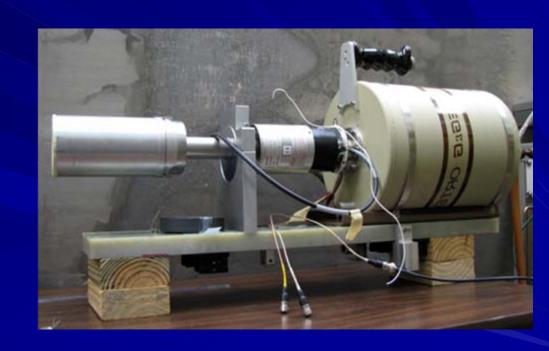

Neutrons (no charge)


- Methods:
 - Hager and Seltzer
 - Rosel et al.
 - Band and Trzhaskovskaya
- Primary difference:
 - Hole ("Frozen Orbital")
 - No hole

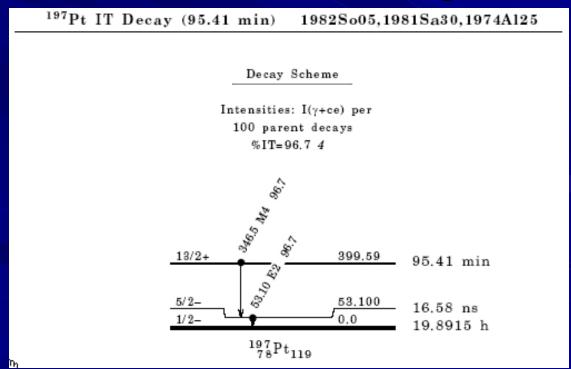
Theoretical and Experimental Discrepancies

A 2002 survey by Raman, et al. called into question the precision of existing ICC measurements; it also highlighted the discrepancies between existing theories.

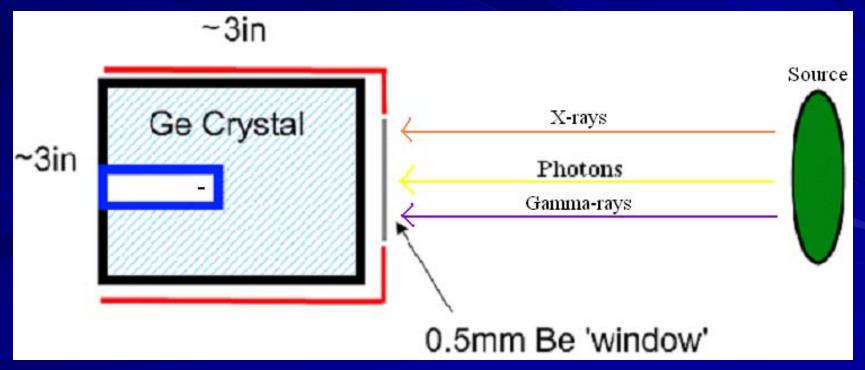
Survey of 100 cases by Raman et al (PRC 66, 044312 (2002)


Precision Experiments

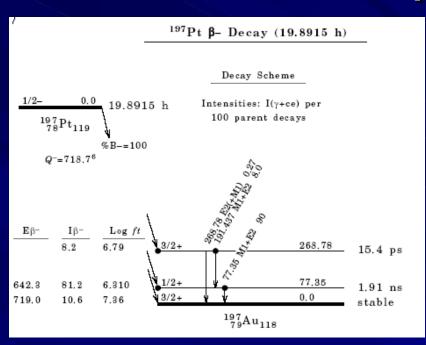
- Precise ICCs measured for:
 - -193 | r
 - ¹³⁴Cs
 - ¹³⁷Ba
- These ICC measurements all suggested the "frozen orbital" (hole) approximation was a better theory.

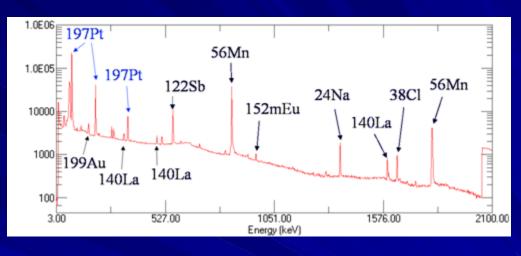

HPGe Detector

- High Purity Germanium crystal detector
- Detects x-rays and gamma-rays
- +/- .15% relative efficiency uncertainty
- +/- .20% absolute efficiency uncertainty


346.5 keV M4 Transition in ¹⁹⁷Pt^m

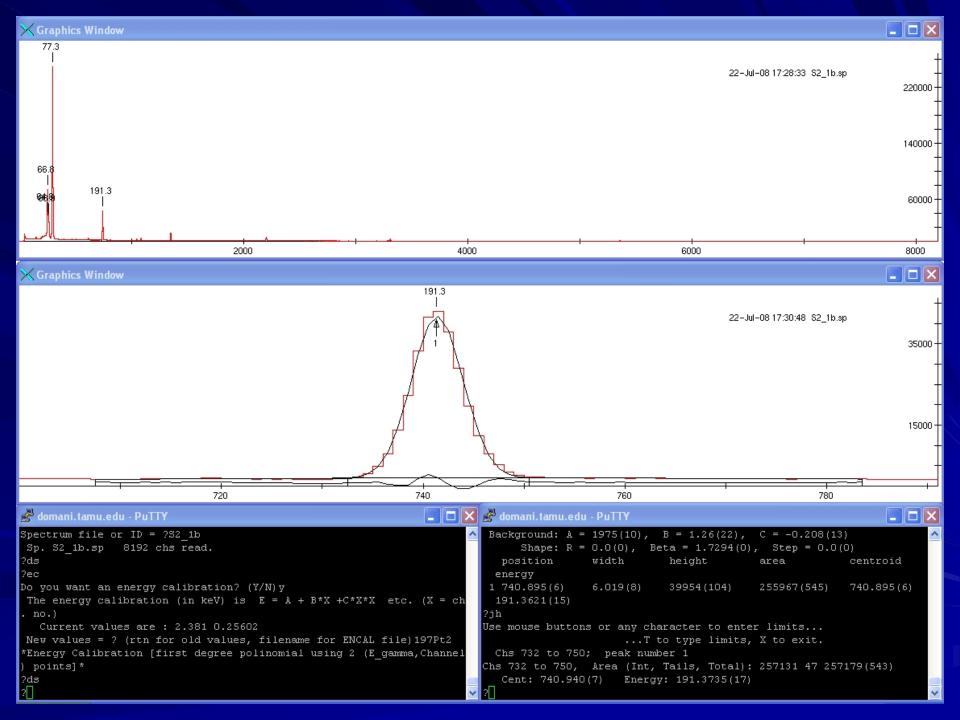
- A 1987 paper by I.N. Vishnevsky, et al. gave the ICC of the 346.5 keV M4 Transition in ¹⁹⁷Pt^m as: α = 4.02 +/- 0.08
- The measurement's disagreement with both theories makes this transition a good test case.

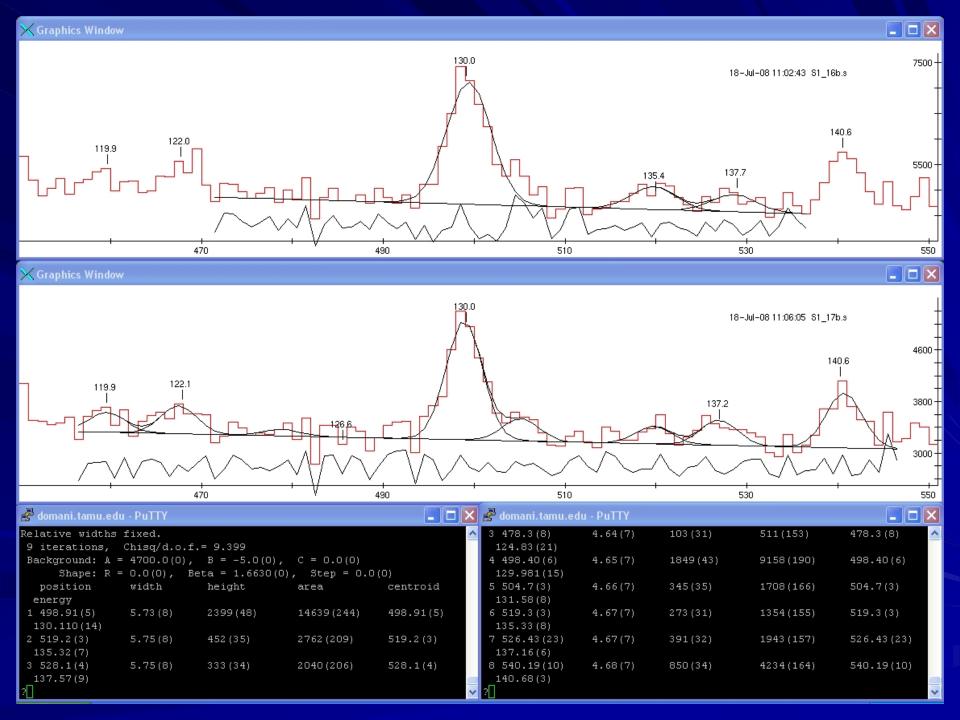



197Ptm Experiment

- 196Pt (97.43% pure) on Mylar backing; source covered by thin Mylar
- ¹⁹⁶Pt->¹⁹⁷Pt^m by thermal neutron activation
- ¹⁹⁶Pt->¹⁹⁷Pt^{gs} also occurs
- S1: Longer activation time resulted in more impurities
- S2: Shorter activation time resulted in less impurities
- X-ray and gamma-ray emissions from both sources recorded by HPGe detector.

Impurities

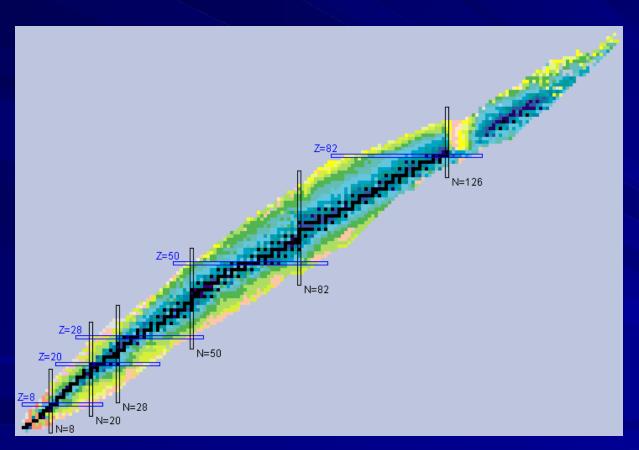




- 197Ptm IT decays to 197Ptg, which beta decays to 197Au.
- In addition, the original samples of ¹⁹⁶Pt contained traces of ¹⁹⁰Pt, ¹⁹²Pt, ¹⁹⁴Pt, ¹⁹⁵Pt, and ¹⁹⁸Pt.
- The presence of these nuclides and others creates a number of small impurities which must be considered in a high precision measurement.

Radware: GF3

- Powerful, commonly used program
- Used to fit Gaussian curves to peaks on spectra
- Customized JCH version allows integration of peaks with tails and background subtraction
- Parameters adjusted manually to enhance precision of fit

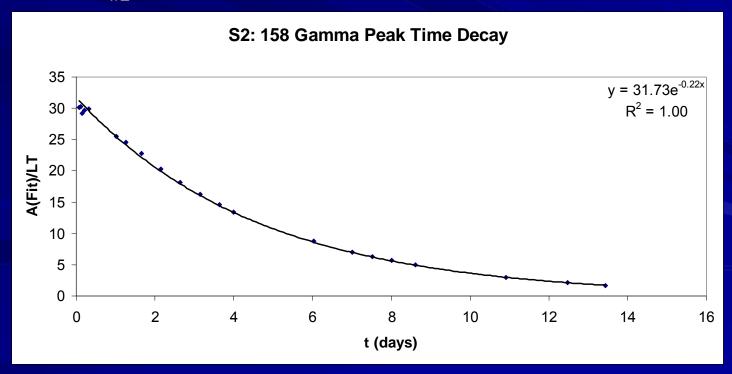


Impurity Identification and Analysis

- S1: 1-17 spectra
- S2: 1-27 spectra
- RADWARE: GF3_JCH
 - NuDat
 - Peak Fits
 - Half-lives
 - **ENSDF Tables**

NuDat

- All known nuclides
- Activation creates unstable nuclides
- Unstable nuclides undergo beta decay
- Chart enables identification of theoretical impurities
- Contains half-life and gamma peak data for identifying actual impurities


Peak Fits

- Gamma-ray peaks
- Fits and JCH integration give area
- Areas give relative contribution of impurities
- Areas can be used sequentially to obtain a half-life

```
23-Jul-08 14:14:40 82_17b.s
Background: \lambda = 4500.0(0), B = -6.0(0), C = 0.0(0)
                            height
  mouse buttons or any character to enter limits ...
                      ... T to type limits, X to exit.
hs 599 to 628, Area (Int, Tails, Total): 627752 O 627753(874)
```

Half-life: T_{1/2}

- Plot changes in area of a gamma peak with time
 - Fit to exponential trend-line
 - Equation form: Ae-λx
 - $T_{1/2} = ln(2)/λ$
 - $^{-197}$ Pt^m T_{1/2} = 19.9 h
- $T_{1/2} \neq 19.9$ h indicates the presence of an impurity.

Data Comparison

Chart of Nuclides

Click on a nucleus for information

80	195Hg 10.53 H ε: 100.00%	196Hg STABLE 0.15%	197Hg 64.14 H €: 100.00%	198Hg STABLE 9.97%	199Hg STABLE 16.87%	200Hg STABLE 23.10%	201Hg STABLE 13.18%	202Hg STABLE 29.86%	203Hg 46.594 D β-: 100.00%
	194Au 38.02 Η ε: 100.00%	195Au 186.098 D e: 100.00%	196Au 6.1669 D ε: 93.00% β-: 7.00%	197Au STABLE 100%	198Au 2.6956 D β-: 100.00%	199Au 3.139 D β-: 100.00%	200Au 48.4 M β-: 100.00%	201Au 26.0 M β-: 100.00%	202Au 28.4 S β-: 100.00%
78	193Pt 50 Y €: 100.00%	194Pt STABLE 32.967%	195Pt STABLE 33.832%	196Pt STABLE 25.242%	197Pt 19.8915 H β-: 100.00%	198Pt STABLE 7.163%	199Pt 30.80 M β-: 100.00%	200Pt 12.6 H β-: 100.00%	201Pt 2.5 M β-: 100.00%
	192Ir 73.827 D β-: 95.13% ε: 4.87%	193Ir STABLE 62.7%	194Ir 19.28 H β-: 100.00%	195Ir 2.5 H β-: 100.00%	196Ir 52 S β-: 100.00%	197Ir 5.8 M β-: 100.00%	198Ir 8 S β-: 100.00%	199Ir β-	
76	1910s 15.4 D β-: 100.00%	1920s STABLE 40.93%	1930s 30.11 H β-: 100.00%	1940s 6.0 Υ β-: 100.00%	1950s ≈9 M β-	1960s 34.9 M β-: 100.00%	1970s 2.8 m β-: 100.00%		1990s 15.2 S β-
	115		117		119		121		123

Ground and isomeric state information for ¹⁹⁷/₇₈Pt

E(level) (MeV)	Jn	Δ(MeV)	T _{1/2}	Decay Modes	
0.0	1/2-	-30.4224	19.8915 h <i>19</i>	β⁻ : 100.00 %	
0.3996	13/2+	-30.0228	95.41 m <i>18</i>	IT : 96.70 % β ⁻ : 3.30 %	

A list of levels, a level scheme and decay radiation information are available

Search options:

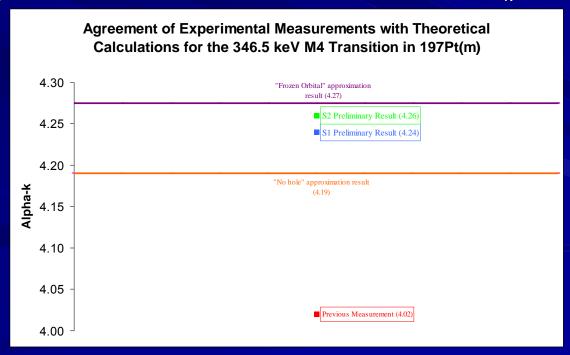
Levels and Gammas Nuclear Wallet Cards Decay Radiation

Help - Glossary

- Databases provide nuclide information
 - Gamma-ray energy, intensity, and T_{1/2} all help identify impurities

Attenuation Correction

- Presence of other media en route to the detector, including the source itself, cause attenuation
- S1: .7 mg of 10 mm diameter Pt in .5 mil thick Mylar; average thickness 4.5 µm
- S2: 1.53 mg of 10 mm diameter Pt in .5 mil thick Mylar; average thickness 2.1 µm
- $I_v = I_{v0}e^{-\mu x}$, where μ is the attenuation coefficient.
- X-rays, gamma-rays, and the Mylar cover are considered to calculate the attenuation correction
- S1: 0.6% attenuation
- S2: 1.4% attenuation


Preliminary Results

- Theoretical:
 - With hole:

$$\alpha_k = 4.275 + -0.0010$$

- No hole:
 - $\alpha_k = 4.190 + 0.0010$

- Experimental:
 - S1:
 - $\alpha_k = 4.24 (13)$
 - S2:
 - $\alpha_k = 4.26 (8)$

Conclusions

- The agreement of our preliminary result with the value obtained from the "frozen orbital" (hole included) theoretical method, combined with the agreement from prior precision ICC measurements of ¹⁹³Ir, ¹³⁴Cs, and ¹³⁷Ba, continues to support the "frozen orbital" method's agreement with experimental measurements.
- The uncertainty in the results for the α_k value means that this agreement is still tentative; the final result will hopefully demonstrate closer agreement with the "frozen orbital" theory.

Future Work

- Complete identification of impurities
- Subtract remaining impurity contributions from spectra
- Obtain final precision values of α_k for both S1 and S2.
- Compare final results with no-hole and "frozen orbital" (hole) theoretical values for α_k.
- Publish results.

Acknowledgments

- Dr. J.C. Hardy
- Dr. N. Nica
- Hardy Research Group
- Dr. David Radford
- Faculty and staff of the Texas A&M Cyclotron Institute
- Texas A&M University
- National Science Foundation
- This work supported under grants from the National Science Foundation, the Department of Energy, and the Robert A. Welch Foundation