Precise Measurements of α_k for the 346.5 keV M4 Transition in ¹⁹⁷Pt^m By James Nolan w/ J.C. Hardy and N. Nica TAMU Cyclotron REU Program 1 August, 2008 #### Internal Conversion - Nuclear de-excitation energy transferred to electron. - Electron emission from atomic orbital. - Typically observed in inner shell electrons (K, L, and M). - Higher-shell electron moves down to fill atomic vacancy; characteristic xray emission results. - Competes with gammaray emission. # Internal Conversion Coefficient (ICC) $\alpha = \frac{\text{number of de-excitations via electron emission}}{\text{number of de-excitations via gamma-ray emission}}$ - The ICC is the ratio of the total number of decays for a particular transition that proceed by internal conversion to those that proceed by gamma emission. - ICC measurements are important in the study of nuclear decay schemes: branching ratios, spin and parity assignments, and transition rates. - Precise ICC measurements are useful for detector efficiency calibration. #### Theoretical ICC Calculations Nucleus High-speed electrons (- charge) Protons (+ charge) Neutrons (no charge) - Methods: - Hager and Seltzer - Rosel et al. - Band and Trzhaskovskaya - Primary difference: - Hole ("Frozen Orbital") - No hole # Theoretical and Experimental Discrepancies A 2002 survey by Raman, et al. called into question the precision of existing ICC measurements; it also highlighted the discrepancies between existing theories. #### Survey of 100 cases by Raman et al (PRC 66, 044312 (2002) #### Precision Experiments - Precise ICCs measured for: - -193 | r - ¹³⁴Cs - ¹³⁷Ba - These ICC measurements all suggested the "frozen orbital" (hole) approximation was a better theory. #### **HPGe Detector** - High Purity Germanium crystal detector - Detects x-rays and gamma-rays - +/- .15% relative efficiency uncertainty - +/- .20% absolute efficiency uncertainty #### 346.5 keV M4 Transition in ¹⁹⁷Pt^m - A 1987 paper by I.N. Vishnevsky, et al. gave the ICC of the 346.5 keV M4 Transition in ¹⁹⁷Pt^m as: α = 4.02 +/- 0.08 - The measurement's disagreement with both theories makes this transition a good test case. ### 197Ptm Experiment - 196Pt (97.43% pure) on Mylar backing; source covered by thin Mylar - ¹⁹⁶Pt->¹⁹⁷Pt^m by thermal neutron activation - ¹⁹⁶Pt->¹⁹⁷Pt^{gs} also occurs - S1: Longer activation time resulted in more impurities - S2: Shorter activation time resulted in less impurities - X-ray and gamma-ray emissions from both sources recorded by HPGe detector. #### **Impurities** - 197Ptm IT decays to 197Ptg, which beta decays to 197Au. - In addition, the original samples of ¹⁹⁶Pt contained traces of ¹⁹⁰Pt, ¹⁹²Pt, ¹⁹⁴Pt, ¹⁹⁵Pt, and ¹⁹⁸Pt. - The presence of these nuclides and others creates a number of small impurities which must be considered in a high precision measurement. #### Radware: GF3 - Powerful, commonly used program - Used to fit Gaussian curves to peaks on spectra - Customized JCH version allows integration of peaks with tails and background subtraction - Parameters adjusted manually to enhance precision of fit #### Impurity Identification and Analysis - S1: 1-17 spectra - S2: 1-27 spectra - RADWARE: GF3_JCH - NuDat - Peak Fits - Half-lives - **ENSDF Tables** #### NuDat - All known nuclides - Activation creates unstable nuclides - Unstable nuclides undergo beta decay - Chart enables identification of theoretical impurities - Contains half-life and gamma peak data for identifying actual impurities #### **Peak Fits** - Gamma-ray peaks - Fits and JCH integration give area - Areas give relative contribution of impurities - Areas can be used sequentially to obtain a half-life ``` 23-Jul-08 14:14:40 82_17b.s Background: \lambda = 4500.0(0), B = -6.0(0), C = 0.0(0) height mouse buttons or any character to enter limits T to type limits, X to exit. hs 599 to 628, Area (Int, Tails, Total): 627752 O 627753(874) ``` ### Half-life: T_{1/2} - Plot changes in area of a gamma peak with time - Fit to exponential trend-line - Equation form: Ae-λx - $T_{1/2} = ln(2)/λ$ - $^{-197}$ Pt^m T_{1/2} = 19.9 h - $T_{1/2} \neq 19.9$ h indicates the presence of an impurity. #### **Data Comparison** #### **Chart of Nuclides** Click on a nucleus for information | 80 | 195Hg
10.53 H
ε: 100.00% | 196Hg
STABLE
0.15% | 197Hg
64.14 H
€: 100.00% | 198Hg
STABLE
9.97% | 199Hg
STABLE
16.87% | 200Hg
STABLE
23.10% | 201Hg
STABLE
13.18% | 202Hg
STABLE
29.86% | 203Hg
46.594 D
β-: 100.00% | |----|---|----------------------------------|---|-------------------------------|-----------------------------------|---------------------------------|---------------------------------|--------------------------------|----------------------------------| | | 194Au
38.02 Η
ε: 100.00% | 195Au
186.098 D
e: 100.00% | 196Au
6.1669 D
ε: 93.00%
β-: 7.00% | 197Au
STABLE
100% | 198Au
2.6956 D
β-: 100.00% | 199Au
3.139 D
β-: 100.00% | 200Au
48.4 M
β-: 100.00% | 201Au
26.0 M
β-: 100.00% | 202Au
28.4 S
β-: 100.00% | | 78 | 193Pt
50 Y
€: 100.00% | 194Pt
STABLE
32.967% | 195Pt
STABLE
33.832% | 196Pt
STABLE
25.242% | 197Pt
19.8915 H
β-: 100.00% | 198Pt
STABLE
7.163% | 199Pt
30.80 M
β-: 100.00% | 200Pt
12.6 H
β-: 100.00% | 201Pt
2.5 M
β-: 100.00% | | | 192Ir
73.827 D
β-: 95.13%
ε: 4.87% | 193Ir
STABLE
62.7% | 194Ir
19.28 H
β-: 100.00% | 195Ir
2.5 H
β-: 100.00% | 196Ir
52 S
β-: 100.00% | 197Ir
5.8 M
β-: 100.00% | 198Ir
8 S
β-: 100.00% | 199Ir
β- | | | 76 | 1910s
15.4 D
β-: 100.00% | 1920s
STABLE
40.93% | 1930s
30.11 H
β-: 100.00% | 1940s
6.0 Υ
β-: 100.00% | 1950s
≈9 M
β- | 1960s
34.9 M
β-: 100.00% | 1970s
2.8 m
β-: 100.00% | | 1990s
15.2 S
β- | | | 115 | | 117 | | 119 | | 121 | | 123 | Ground and isomeric state information for ¹⁹⁷/₇₈Pt | E(level) (MeV) | Jn | Δ(MeV) | T _{1/2} | Decay Modes | | |----------------|-------|----------|---------------------|---|--| | 0.0 | 1/2- | -30.4224 | 19.8915 h <i>19</i> | β⁻ : 100.00 % | | | 0.3996 | 13/2+ | -30.0228 | 95.41 m <i>18</i> | IT : 96.70 %
β ⁻ : 3.30 % | | A list of levels, a level scheme and decay radiation information are available Search options: Levels and Gammas Nuclear Wallet Cards Decay Radiation Help - Glossary - Databases provide nuclide information - Gamma-ray energy, intensity, and T_{1/2} all help identify impurities #### **Attenuation Correction** - Presence of other media en route to the detector, including the source itself, cause attenuation - S1: .7 mg of 10 mm diameter Pt in .5 mil thick Mylar; average thickness 4.5 µm - S2: 1.53 mg of 10 mm diameter Pt in .5 mil thick Mylar; average thickness 2.1 µm - $I_v = I_{v0}e^{-\mu x}$, where μ is the attenuation coefficient. - X-rays, gamma-rays, and the Mylar cover are considered to calculate the attenuation correction - S1: 0.6% attenuation - S2: 1.4% attenuation #### **Preliminary Results** - Theoretical: - With hole: $$\alpha_k = 4.275 + -0.0010$$ - No hole: - $\alpha_k = 4.190 + 0.0010$ - Experimental: - S1: - $\alpha_k = 4.24 (13)$ - S2: - $\alpha_k = 4.26 (8)$ #### Conclusions - The agreement of our preliminary result with the value obtained from the "frozen orbital" (hole included) theoretical method, combined with the agreement from prior precision ICC measurements of ¹⁹³Ir, ¹³⁴Cs, and ¹³⁷Ba, continues to support the "frozen orbital" method's agreement with experimental measurements. - The uncertainty in the results for the α_k value means that this agreement is still tentative; the final result will hopefully demonstrate closer agreement with the "frozen orbital" theory. #### **Future Work** - Complete identification of impurities - Subtract remaining impurity contributions from spectra - Obtain final precision values of α_k for both S1 and S2. - Compare final results with no-hole and "frozen orbital" (hole) theoretical values for α_k. - Publish results. #### Acknowledgments - Dr. J.C. Hardy - Dr. N. Nica - Hardy Research Group - Dr. David Radford - Faculty and staff of the Texas A&M Cyclotron Institute - Texas A&M University - National Science Foundation - This work supported under grants from the National Science Foundation, the Department of Energy, and the Robert A. Welch Foundation